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ABSTRACT

New and recently developed concepts and ideas useful
in obtaining efficient computer algoritims for solving the

equations of motion of multi-body mechanical systems with

. flexible links are presented and discussed, These ideas
A include the use of Euler parameters, Lagrange's form of
d'Alembert's principle, generalized speeds, quasi-coordinates,
relative coordinates, structural analysis techniques and body
connection arrays. The mechanical systems congidered are
linked bodies forming a tree structure, but with no "closed

loops"” permitted. An explicit formulation of the equations

of motion is presented,




INTRODUCTION

This report discusses the development of new methods for including the

effects of flexibility and link and joint compliance in the governing dynami-

; : cal equations of multi-body systems. Specifically, new, computationally-
oriented techniques with potential for efficient, automated, and comprehensive

analyses of multi-body system dynamics are presented and discussed.

The development of equations of motion of multi-body mechanical systems
has received considerable attention of analysts in recent years. There are
several reasons for this: Foremost, is'the fact that many mechanical systems
and devices can be effectively modelled by systems of linked bodies. But,
another reason is the fact that it has just recently been possible with the aid
of high-speed digital computers, to obtain efficient numerical solutions of the
governing dynamical equations. Hence, the emphasis of researchers and analysts
working with multi-body systems has been the formulation of equations of motiomn

which can easily be developed into numerical algorithms for a computer code.

Most of the recent efforts in obtaining these dynamic formulations and their
; corresponding computational algorithms has been with systems of linked rigid
. o bodies. Recently, however, a few researchers have attempted to include the
effects of flexibility, compliance, and relative translation of the links by

using a variety of approaches such as quasi-static methods, finite-element meth-

ods, modal analysis, and the strategic positioning of the flexible bodies, (for

! example, to éhe extremities of the syétem). Many of these efforts and the
corresponding methodologies have been stimulated and motivated by specific

' ! application areas such as mechanism vibration and flexible satellite oscillations.

In this report, these ideas are used and extended in the outline of new proce-

dures for efficiently modelling the dynamics of multi-body systems with flexible

links and joints.




If a mechanical system consists of connected bodies such that no closed
loops or circuits are formed, the system is called a "general-chain", "open-
chain”, or "open-tree" system. Figure 1. depicts such a system. References
[1-81)}*provide summary of approaches taken to obtain efficient, computer-
oriented formulation of equations of motion for such systems and related systems.
If the mechanical system model of Figure l.is generalized to include transla-
tion and compliance at the joints, it might appear as shown in Figure 2,
References 2-143 provide a summary of approaches taken to include the effects

of flexibility, translation, and link and joint compliance of these systems.

In one of these approaches it is shown [28, 29, 37, 38, 39, 51] that it is
possible to obtain expressions for the governing equations in a form where the
coefficients are directly related through computer algoritims. This approach
uses Lagrange's form of d'Alembert's principle, as exposited by Kane and nthers
[30, 52, 144, 145, 146] together with body connection arrays [37, 38, 39] and
relative orientation coordinates [31, 32, 37, 50] to obtain the governing equa-
tions. Lagrange's form of d'Alembert's principle ~ a virtual work type approach
combines the computational advantages of both Newton's laws and Lagrange's equa-
tions. That is, it has the advantage of automatic elimination of non-working
internal constraint forces but without the introduction of tedious differentia-

tion or other similar calculations.

Recently, it has been suggested by Huston, et, al. [32, 33, 37] that further
efficiencies could be obtained through the use of Euler parameters as described
by Whittaker [146] and Kane and Likins [147], together with the quasi-coordinates
suggested by Kane and Wang [148]. Specifically, it is claimed [32, 33, 37] that
using Euler parameters together with relative angular velocity components as
generalized coordinate derivatives allows for the avoidance of geometrical singu-

* Numbers .in brackets refer to References at the end of the report.
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i_ larities encountered with using Euler angles or dextral orientation angles to

define the relative orientation of the bodies.

The use of Lagrange's form of d'Alembert's principle, body connection arrays,
relative orientation coordinates, quasi-coordinates, and Euler parameters also

promises to provide an effective and efficient approach in the modelling, gover-
ning equation formulation, and analysis of multi-body systems with flexible links

and joints. The exposition of these ideas is a primary objective of this report.

The balance of the report is divided into five parts with the first two
y parts containing the geometrical and kinematical development. The governing

| dynamical equations are developed in the third part. This is followed by an
analysis of the flexibility and compliance effects in the fourth part. The
final part contains a discussion of the developed procedure together with con-

cluding remarks.
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PRELIMINARY GEOMETRICAL CONSIDERATIONS

Body Connection Array

Consider a mechanical system such as depicted in Figure 1. To
develop an accounting routine for the system's geometry arbitrarily select
one of the bodies as a reference body and call it Bl. Next, number or
label the other bodies of the system in ascending progression away from

B, as shown in Figure 1. Now, although this numbering procedure does not

1
lead to a unique labeling of the bodies, it can nevertheless be used to
describe the chain structure or topology through the "body connection
array" as follows: Let L(k), k=l,...,N be an array of the adjoining

lower numbered body of body Bk'. For example, for the system shown in

Figure 1., L(k) 1is:
L(k) = (0,1,1,3,1,5,6,7,6) (1)
where
(k) = (1329334’5’6’7’8!9) (2)
and where 0 refers to an inertial reference frame R. It is not difficult
to see that, given L(k), one could readily describe the topology of the system.
That 1is, Figure 1. could be drawn by simply knowing L(k). It is shown in

the sequel that L(k) is useful in the development of expressions of

kinematical quantities needed for analysis of the system's dynamics.
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Transformation Matrices

Next, consider a typical pair of adjoining bodies such as BJ and Bk
as shown in Figure 3. The general orientation of Bk relative to Bj
may be defined in terms of the relative orientation of the dextral

orthogonal unit vector sets By and n . (1=1,2,3) fixed in Bj and Bk

as shown in Figure 2. Specifically Eji and D4 are related to each

other as

Ry3 = Syt (3)

where SJK is a 3 x 3 orthogonal transformation matrix defined as [47]:

SJKim = Eji b Ekm 1S

(Regarding notation, the J and K in SJK and the first subseripts on the
unit vectors refer to bodies Bj and Bk’ and repeated indices, such as the
m, in Equation (3) signify a sum over the range (eg. 1l,...,3) of that

index. Thus, with a computer SJK, would be the array SJR(IM).)

im
From Equation (3), it is easily seen that with three bodies Bj’ By»

Bg, the transformation matrix obeys the following chain and identity rules:

SJL = SJK SKL (5)
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and

SJJ = I = SJK SKJ = SJK SJK I

(6)
where I is the identity matrix,

These expressions allow for the transformation of components of
vectors referred to one body of the system into components referred
E to any other body of the system and, in particular, to the inertial

reference frame, R. For example, if a typical vector, V, is expressed

as
' (k) (0)
Vv, Mg =Yy By N
then
© (k)
vi soxij vj (8)

where 0 refers to the inertial frame, R.

Since these transformation matrices play a central role throughout
the analysis, it is helpful to also have an algorithm for their derivative,
especlally the derivative of SOK. Using Equation (3), and noting that O54

are fixed in R, the following is obtained:

R
d(SOKij)/dt =05 4 Bkj/dt 9

WY -t e , . . R
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where the R in Rd nkj/dt indicates that the derivative is computed in
R. However, since the Ekj are fixed in Bk’ their derivatives may be
written as we X Ekj where Wy is the angular velocity of Bk in R,

Equation (9) may then be written as:

d(SOKij)/dt = -e, %kn fom ° Ekj (10)
or as

d(SOK)/dt = WOK SOK (11)

where WOK is a matrix defined as

w (12)

and where W, are the components of Wi referred to Ln and e mn is the
standard permutation symbol [150]. (WOK is simply the matrix whose dual
vector [150] is Qk.) Equation (11) thus shows that the transformation matrix

derivative may be computed by a simple matrix multiplication,

Euler Parameters

FPinally, consider describing the relative orientation of B, and Bk

3
by using the so-called Euler parameters as discussed by Whittaker [147] and Kane

and Likins [148] It is well known [147] that Bk may be brought into any

10
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general orientation relative to B 1 by means of a single rotation about an

appropriate axis. If 51: is a unit vector along this axis and if ek is the

rotation angle, the four Euler parameters describing the orientation of B

k
relative to Bj may be defined as:
€ = Akl sin(ek/Z)
-
. €2 ™ >‘k2 sin(ekIZ)
a3
€3 = )‘k3 sin(ekIZ)
ekl; = cos (Ok/2)
where the )‘k 1 (1=1,2,3) are the components of }'k referred to Ej P the unit
vectors fixed in Bj’ Clearly, the €1 (i=1,2,3,4) are not independent since:
2 2 2 2
. €a * S t fia t G 1 (14)

These parameters may be related to angular velocity components by
using the transformation matrices as follows: It is shown in [147, 148)

that SJK may be expressed in terms of these parameters as:

11
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T R LWL O A Ty
SJK = | 2(g, €, ;+€, €, ,) _€2 +e2 -e2 +e2 2(€, €, a=Ey 1€y ,) (15)
k1%k2 e u3Cks k1 €2 k3 ks 125131 ket

2 2 . 2. 2
2(suek3-ekzek4) z(ekzek3+€k1€k4) ='€k1'ek2+ek3+ek4

Now, by solving Equations (11) and (12) for the angular velocity components,

one obtains:

W, = SOK,, SOK, + SOK "SOK.,. + SOK

31 22 SO0K3, SOk

23 33

W, = 501(31'561(11 + sox32'séx12 + sox33'sc'>x<13 (16)

Weq = SOK11 SOKZI + SOK12 SOK22 + SOI(13 SOK23

where the dot designates time differentiation. By using Equation (15),
these expressions may be used to express the nji components of the angular

velocity of Bk relative to Bj in terms of the Euler parameters as:

ey ™ 2(84 € = €3 Ex2 * S2 G T S Ska)
oo = 2083 Sq * €p 2 ~ S Ei3 T k2 Ska) an

Weq = 20=€yp €yq + € Epp + €1y Epg T i3 Eyp)

12




(Regarding notation, in the sequel "hats" refer to relative angular

velocity vectors or their components. That is the mk represent the

angular velocity of Bk in R and @k represent the angular velocity of

B, relative to B,, its adjoining lower numbered body.) Equation (17)

j’
may now be solved for the §k1 (i=1,...,4) in terms of the Gki,leading

‘ to the expressions:

] . Eld.

ey Wy F €y Wgg = Epp Yys)

L]

&2

1 A A A
(6 q By ¥ € Ypep F Eg1 Yyy)

(18)

€y ™ €y Wiy = €y Wp F Epy Uyy)

g ™ (R B T €p Yp T Eiy Yg)

This solution is quickly obtained by observing that if Equation (14) is
differentiated and placed with Equation (17), the resulting set of equations

could be written in the matrix form:

" - r - =,
@1 €4 i3 &2 “fral |G
W2 €x3 s “fr1 k2| |%k2
. =2 . (19)
W3 V) € €xs  “Fr3| |%k3
| “x4] | €x1 €2 €x3 *ka| |Sk4)
13




where Ord is equal to the derivative of Equation (14) and has the value
zero. The square matrix in Equation (19) is seen to be orthogonal

(ie. the inverse is the transpose) and hence, Equations (18) follow

immediately from (19) upon letting Wyg be zero,

14
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Coordinates

A multibody system of N bodies, with translation permitted between
the bodies will, in general, have 6N degrees of freedom. Let these be
described by 6N generalized coordinates Xy (2=1,...,6N) and let the first

3N of these be divided into N triplets describing the relative

orientation of the successive bodies of the system. Let the

remaining 3N xy also be divided into N triplets representing the relative
displacement of the successive bodies of the system. As before, let Bk

be a typical body of the system and let Bj be its adjacent lower numbered

body, as in Figure 3. The angular velocity of Bk relative to B, (that is,

3

the relative rate of change of orientation) may then be written as:

~ ) A ~ l 1
7 Y 21t B By2 Y Bys (20)

vhere nji (j-l,...,Nj i=1,2,3) are mutually perpendicular dextral unit

vectors fixed in Bj’ Next, let these bodies be displaced relative to

each other with the displacement measured by the vector Ek as shown in T

Figure 4., where Oj and 0k are arbitrarily selected reference points of

Bj and Bk' Qg » which is fixed in Bj

of Bk. Then Ek may be written in the form:

» is the connection point or "origin"

15
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Following Kane and Wang [149] introduce 6N parameters Yy (2=1,...,6N)

defined as:

yz-izﬂ.- 1,..., 6N (22)

where the first 3N of these are called "generalized speeds", are

~

Vg2 = %1

Tk-1 © akz . 23)

Tag = Y3

and the remaining 3N are:

Y3wk)-2 = S

Y3ex)-1 = w2 (24)

*

Y3mk) T k3

17




In generazl, Equations (23) are non-integrable. That is, they cannot

be integrated to obtain generalized orientation coordinates Xap-2 *
X3p-1 * F3p Thus, explicit parameters Xgp2® X3p.1? and X do not

in general exist--hence, the name "quasi-coordinates'. However, since
parameters are needed to relate the relative orientation of the bodies

to the respective relative angular velocities, let the Euler parameters
introduced in the foregoing section be used for this purpose. Hence, if the
orientation of a typical bedy Bk relative to Bj is described by the four
parametaers Eki (i=1,...,4) ,the geometry and kinematics of the entire system

may be expressed in terms of the 4N Euler parameters Eki (k=l,...,N; i=1,...,4),
the 3N relative angular velocity components Gki (k=1,...,N; 1=1,2,3), and the

3N displacement components Eki (k=1,...,N; i=1,2,3).

Angular Velocity

The angular velocity of a typical body Bk in the inertial frame R is
readily obtained by the addition formula as [145]

'i'k'él+"'+§k (25)

where the relative angular velocities on the right side of this expression
are each with respect to the respective adjacent lower numbered hodies and

where the sum 18 taken over the bodies of the chain from B, outward through

1
t the branch containing Bk' The L(k) array introduced in the foregoing section

can be useful in computing this sum: Consider for example, the system shown

TR s in Figure 1. The angular velocity of B, is:

9
18
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~ ~N ~ A
= w g +ug + g (26)

e
0

The subscript indices (ie. 9,6,5,1) may be obtained from L(k) as

follows: Consider L(k) as a function mapping the (k) array (See Equation (2))
into the L(k) array. Then, using the notation that Lo(k) = (k),

ttao = 1w, 2w = ratw, ..., 3w = tad T w®), 1t 1s seen

(see Equation (1)) that:

199 = 9, 29 =6, 12(9) = 5, 139 = 1 @n
Therefore, wy may be written as:
=7 & , q=1P@ (28)

§
W
~9 o ~4

Hence, in general, the angular velocity of Bk may be written as:

13 ~
= 7 w, q=tPm (29)
% L Y

where r is the index such that Lr(k) = ] and it is obtained by comparing

Lp(k) to 1. The index r represents the number of bodies from B, to Bk in

1
that branch of the chain system Bk. For example, for the system of Figure 1.,
1f k=9, r=3, Equation (29) is thus an algorithm for determining w, once Gk

and L(k) are known.

19




By examining Equations (20, (23), and (25) it is seen that w, DAY be

written in the form

91: - wk.un Y2 Bon (30)

where there is a sum over the repeated indices and where mklm (k=1,...,N;
fml,...,3N; m=1,2,3) form a block array of coefficients needed to express

Qk in terms of - SO In view of Equations (3), (16), (20), and (23),

it is seen that the elements of the mkﬁm array may be obtained from the SOK
transformation matrices, Moreover, it can be shown that the matching between
the elements of the wklm and SOK arrays is solely dependent upon the body

connection array L(k).

To see this, consider for example the angular velocity of 54 of the

system of Figure l: From Equation (25), 94 is

W = + @ +<§ (31)

~ A

vhere from Equations (3), (20), and (23) 91. 93, and 94 may be written as:

~

W = Y381 * V3 Bz ¥ Y3 o3 = ¥y Sy Bon (32)
Wy = 7 B33 ¥ Yg By + Fg B33 = YVeuy SO 20m (33)
W, * Y0 B33 * Ty3 B33 ¥ V12 B33 7 Vouy 5034 Bgyp (34)

20
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Hence, the Wpom are:

§ 2=1,2,3
0 L =4,5,6

Wom ™ 501m£-9 2 =7,8,9 m=1,2,3 (35)

™
]

S03 10,11,12

ml-9

0 L>12

where Gij are the identity matrix components [150].

Next, consider that the results such as Equation (35) may be obtained for
the entire system of Figﬁre 1. or Figure 2, from a table such as Table 1.,
where the "m" entries of the W g 8rTay are the column of the transformation
matrices. Finally, note that the non-zero entries in a typical row,

h row of Table 1, are obtained as follows: Let P = L(k).

h

say the kt

Then SOP is placed in the k" column of triplets of iz. Next, let Q=L{(P).

h columm to triplets of iz, ete, That is, SOM

The SOQ is placed in the P°
is placed in columm Lj-l(k) where M = Lj(k), j=1,...,r+1 with r determined
from L7 (k) = 1.

Finally, it 1is interesting to note that the elements of the W om array

(and hence, the trausformation matrir colummns of Table 1.) are components

of the "partial angular velocity vectors" as originally defined by Kane [144].

21
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Angular Acceleration

The angular acceleration of Bk in R may be obtained by differentiating

Equation (30). Noting that the B, are constant, this leads to:

o = (g0 % * ogn ¥ B (36)

A table containing the &kkm can be constructed directly form the corresponding
table for the W g For example, for the system of Figure 1,, such a

table is shown in Table 2.

Mass Center Velocities

The velocity and acceleration of the mass center Gk of a typical body
Bk (k=1,...,N) may be obtained as follows: Let r, locate Gk relative 0,

as shown in Figure 4. Since 0, is located relative to Qk by Ek and if Qk is

k
located relative to 0j by the vector % (See Figure 4.), then by continuing
this procedure, Gk may ultimately be located relative to a fixed point 0 in

R, the inertial reference frame, For example, for Body 38 of Figure 2., the

position vector Pa of G8 relative to 0 is:

LT S PR T A P VA - "l T (37

In general, for Body Bk’ the position vector Pk of Bk relative to 0 is:

23
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u
P = [S0Rgy o * qzo S0S;y (qgp, + &) 1myy (38)
vhere s = 13(k), § = LY (k), and u is the index such that L%(k) = 1,

and where 9 is 0. By differentiating, the velocity of Gk in R 1g obtained

as:

a
Y = 150Ky, Ty, ¥ qu [505:n (Ugn *+ Eqp)
+ SOS1h Esh] oy (39)

By using Equations (11), (12), and (30), v, may be written in the form:

Y ° Yrim 72 Som (40)
where Viem (k=1,,..,N; 9=1,...,6N; m=1,2,3) form a block array of coefficients

needed to express Vi in terms of n In view of Equation (39), the

~om’

non-zero szm are:

u
Vidm = ang Ty * q-z-o "Sone Ban * %an)

(k=l,...,N; 2=1,...,3N; =w~1,2,3) (41)

25
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where thh i3 defined as:

JWOK
m B -

soxph emp 1 Yoy scnzx,h 42)
32y1

Weone ™
and

vk(3N+£)m = Wyom (k=1,...,N; 2=1,...,3N; ==1,2,3) . (43)

The elements of the v array are components of the '"partial velocity vectors"
as originally defined by Kane [144].

Mass Center Accelerations

Similarly, by differentiation of Equations (40), the acceleration

of Gk in R is

& " Yeen Y3 Vien Y0)%m (44)

where the non-zero Gixm are, by Equations (41) to (43),

[ u-l . .
Yetm ” MRane Ten T T (W8, (B Q) * WSppefst (kml..l,Ns

q=0
0m1,...,3N, =1, 2, 3) (45)
where WK ng 18
K (46)

WEont = “tapy (g SOK,p *+ 4y, SOKL)

26
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and

RPN/ AN

V(W) = d o (elyeel, N5 £ol,000, 3N, ©e1,2,3)

27
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EQUATIONS OF MOTION

Consider again a general chain system such as shown in Figure 2., and
imagine the system to be subjected to an externally‘applied force field.
Let the force field on a typical body B, , be replaced by an equivalent
force field consisting of a single force gk’ passing through Gk together
with a couple with torque Ek' Then Lagrange's form of d'Alembert's principle
leads to governing dynamical equations of motion of the form [38]:

F, + Fl* =0 f£=1,...,6N (48)

L

Fz (2=1,...,6N) 1is called the generalized active force and is given

by:

Fo* “vom B ¥ “tn M (49)

where there is a sum from 1 to N ou k and from 1 to 3 on m, and where ka
T %
and Ekn are the compouents of Ek and Eﬁ with respect to Sm * g

(2=1,...,6N8) 1s called the generalized inertia force and is given by:

Fy* Vit Tk + tign % (50

28




)

where the indices follow the same rules as in Equation (48), and where

Fk; and Mﬁm are n components of inertia forces, E *, and inertia torques,

Ek*’ given by [145].
Ek* = -mi a (no sum) (51)

and

Mr= oL v ~w % (I 0 w) (no sum) (52)

where LR is the mass of Bk and Ik is the inertia dyadic of Bk
relative to Gk (k=1,...,N). (F*, with line of action passing through
G& together with Hﬁ are equivalent to the inertia forces on Bk[145].

Through use of the shifter transformation matrices, Ik nay be written

ia the form:

5 * Lam Zom Pon (53)

By substituting Equations (36) and (44) into Equations (51) and (52)
and ultimately into Equation (47), the equations of motion may be written

in the form:

29




azp yp - f£ (2=1,...,6N) (54)
where there is a sum from 1 to 6N on p and where azp and fz are

given by:

alp = mk vkpm Vitm + Ikmn ukpm mkln (35)

and
fl == (Fz + % Viim vkqm yq + kem “kim mkqn yq

+ ®amh Ikmr mkqn Wesr Uy tn yq ys) (56)

where there is a2 sum from 1 to N on k, from 1 to 6N on q and s, and from
1l to 3 on the other repeated indices.

Recall that the first 3N yp are relative angular velocity components.
Thegse may be related to the Euler parameters by N sets of first order
equations of the form of Equations (18).

Equ;:ions (54), (20), and the 4N equations of the form of Equations
(18) form a set of 13N simultaneous first-order differential equations for
the 6N yp, the 3N gki’ and the 4N Euler parameters €, . (h=1,...,N;
i=]l,...54). Since the coefficients azp and f2 in Equations (54) are
algebraic functions of the physical parameters and the four block arrays
W g &klm’ Vidn and ;kzm’ computer algorithms can be written for the

numerical development of these governing equations. Moreover, once these
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arrays are developed, the system of equations consisting of Equations (54),
(20), and 4N equations of the form of Equations (18), may also be solved
numerically by using one of the standard numerical integration réutines
and a linear equation solver.

The development of these computer algorithms and the numerical development
of Equations (54) might proceed as follows: First, let the body connection
array L(k) (See Equation (1)) together with *he geometrical and physical
parameters r., &, Ek’ and L (See Equations (38), (51), and (52).) and
the applied forces and moments Ek and %k (See Equation (48).) be read into
the computer. (Let T gk’
Terns of Eki') Next, from assumed initial values of g ; form the

!
Ik and, if desired, Fk and Mi be expressed in

transformation matrix arrays SOK using Equations‘(ls) and (5). Use these

arrays to express I, §k’«£k and possibly Ek and yk in tefms of R Next,
using L(k) and SOK write an algorithm, with Tables 1. and 2. as a guide, to
form wkzm and &kzm . For example, to obtain the non-zero mkzm' observe that

if L(k) = p, then Wyom = SOPM (m=1,2,3; =3p+l, 3Jp+2, 3p+3). Then, if

L(p) = q, 12(k) = q and Weom = SOQ  (m=1,2,3; L=3q+l, 3q+2, 3q#3).

This assignment procedure is continued until unity 1is reached or r times

where ¥ is given by Lr(k) = 1 (See the remark following Equation (29).).

Vvim and len may then be obtained using Equations (40) to (47). Finally,
numerical values of the coefficients alp and fz of the governing differential
equations (54) may then be obtained from Equations (55) and (56). These
equations may then be integrated numerically to obtain incremental values to the
i{nitial values of the parameéets yp, €y and xq (p=l,.0.,3N+3; k=1,...,N; 1-1,2,3,:

and q=1,2,3), at the end of a time interval, say t. New values of the
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transformation matrix arrays SOK may then be obtained and the entire process
repeated until a history of the configuration and motion of the system is

determined.

The application of these expressions and ideas in an analysis of the
flexibility and compliance effects is developed in the following part of the

report,
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EFFECTS OF COMPLIANCE AND FLEXIBILITY

Compliance

Let the term "compliance" refer to the yielding or deformation of the aystem
due to the externally applied forces and due to the inertia forces, If the
assumption is made that the compliance of a link or joint is "small" compared with
the general dimensions of the system, then the effects of trhe compliance can be

determined directly from the integration of Equations (54),

To see this, consider a typical integration step as described at the end of
the foregoing section. If the vklm, 6k£m’ Wy om? &kzm’ eki’ Yo » and §2 are known,
all the kinematics is known. That 1is, by using Equations (30) and (36) the angular
velocity and angular acceleration of each body is determined. Similarly, by using
Equations (40) and (44), the velocities and accelerations of the mass centers of
each of the bodies is determined. Then, by using Equations (51) and (52) the
equivalent inertia force system on each body is determined. Hence, since the
externally applied force field on each body is also known, the entire force system
on each body is determined. Therefore, by taking successive free body diagrams of
the bodies of the system, starting with the Nth body and working backward through
the chain, the force system transmitted across each connection joint may be deter-
mined. Finally, by knowing the complete force system acting om each body, includ-
ing the forces transmitted across the connection joints, the physical force-defor-
mation relations may be used to determine the compliance. Then by addition and

superposition the compliance of the entire system is determined.

To illustrate this procedure in more detail, assume, for example, that the
bodies of the system are long slender members which can be modelled as beams with
uniform cross section. Hence, the system of Figures 1. and 2. might appear as
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resultant force system exerted on B

shown in Figure 5., and a typical member of this system might be depicted as in
Figure 6., where a recfangular shape 1is assumed and where an axes gystem is intro-

duced. As before O, is the connection point of the adjacent lower numbered body

B
By and Qk i3 the connection point with the adjacent higher numbered body By.

Let the forces exerted on Bj by Bi and Bk at the connection joints 0j and

Qk be represented by single forces gi/j and fk/j passing through 0j and Qk

together with couples with torques §i/j and ﬁk/j’ Similarly, let the externally
applied force system on Bj together with the inertia force system of Bj be repre-
sented by equivalent force systems at the ends Oj and Qk of Bj’ Hence, let the
at Qk be represented by the single force Sk/j

h|
passing through Qk’ together with a couple with torque mk/j and let fk/j and mk/j

be expressed in the forms:

fxrg " E51 %1t By2 Dya tfy3 043 (57)

and
Te/i - P51 041t Ty2 Byo F M3 By3

(Note, that from equilibrium considerations, the force system exerted on Bj at 0j

is equivalent to a single force -fk j passing through OJ together with a couple

with torque - Ek/j')

Let the displacement of Qk relative to O, due to the beam compliance, or

3

deformation, be represented by uj. Let Ej be written in the form:

Uy = Uy3 Byy Y ugp Byy Fuyy Dyg (59)
Similarly, let the rotation of the beam cross section at Qk relative to the cross

section at Oj, due to the beam compliance, be represented by gj' Let ¢j be
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written in the form:
95 ™ 951 241 F 052 832 T 433 Iy3 (60)
By following the precedures of matrix structural analysis [15] uji and ¢ji
may be expressed in terms of fji and mji (L =1, 2, 3) as:
j (lj/AjEj) fj (61)
- 3 2
ujz (21/323J32) sz + (2,3/22j sz) “j3 (62)
- 3 2
uj3 (23/3Ej j3)fj3 ¢ /ZBj j3) mjz (63)
- 64
31 (9.:‘/.1:]1 j) ™y (64)
2 6
j = (L lzszjz) sz + (zj/E.sz) m 4 (65)
- (02
643 = (Q3/2E,T5) £55 = (L/ESTy5) myy (66)
where 23 is the axial length of Bj’ A.j is the cross-sectional area, in (1 =1,2, 3)
are the centroidal second moments of area of the cross section relative to the in

axes, Ej is the elastic modulus, and G, is the shear modulus.

3
Bj and 23 thus represent the compliance as yielding of member Bj due to the
holdin; and system motion. In an automated analysis as outlined in the foregoing
section, Ej and ¢j would be calculated and then used to adjust the geometrical
parameters at each integration step. Specifically, g, (See Figure 4.) and SOK are

adjusted as:

g Y (67)
and
SOK +SOK CJ (68)
where CK is
1 '¢j3 d-’jz
cJ =
%3 1 -3, (69)
¢j2 ¢j1 1
37
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(The development of Equation (69) follows from the successive multiplications of
matrices of the form of Equation (15) for 6 being ¢jk’ ¢j2’ and ¢j3 (small angles)

about the X 29 and X 3 axes respectively.) The integration would then pro-

X
h B b
ceed with the adjusted values of 9y and SOK.

Vibration and Impact Response

The above compliance analysis is a quasi static analysis and as such it does
not directly account for oscillatory or vibration phenomena due to the flexibility
of the system and the externally applied (for example, impact) and inertia forces.
If, as before, it is assumed that the vibrations have relatively small amplitude,
then a modelling and description of the vibration phenomena may be obtained through
torsion and translation springs introduced at the connection points, or joints, of

the system.

To illustrate this, consider again a system consisting of long slender members
which can be modelled as beams as in Figure 5. Consider two typical adjoining mem-
bers of such a system as shown in Figure 7. The contribution to the systems

oscillation due to the flexibility of B, can be modelled by 1) three torsion springs

3

connecting the surfaces of Qk and 0k with spring constants Gijl/zj’ and Eij3/2.j

and governing the relative rotation of Bj and Bk about axes parallel to le, sz

and n,, respectively; and by 2) three translation springs connecting Qk and 0k with

33

3 3
spring constants AjEj/Zj, 3EjJJ3/lj and 3Eij2/9,j and governing the relative

translation of B, and Bk along axes parallel to le’ sz, Bj3' (these constants are

3

determined from elementary structural analysis as in Equations (61) to (66).)

Piscussion

Both of the above analyses involve the effects of forces and moments trans-

mitted across connection joints, The dynamics analysis of the preceding part is
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particularly well suited for accomodating the introduction of these forces and
moments and for obtaining their contributions to the generalized forces. That

is, although the compliance procedure above suggests the use of successive free
body diagrams to obtain theifotce and moment components, and although this pro~-
cedure could be automated, these components as well as the spring and moment com-
ponents of the above oscillation analysis, can be readily obtained and directly
incorporated into the governing equations by using the partial velocity and partial

angular velocity vectors of the preceding dynamics analysis.

To see this, consider again two typical adjoining bodies such as BJ and Bk
of Figures 4. and 7. As in Figure 4., let Ek measure the displacement of 0k rela-
tive to Q. Then by differentiation of [145] the velocity of 0, may be ex~

?ressed as: Yok = YQk + QJ xék + éki nji (70)

As before, let the orientation and rotation of Bk relative to Bj be defined in
terms of Euler parameters and relative angular velocity components. Then, from

Equation (25) the angular velocity of Bk may be expressed as:
G =yt &y = wy + &kigji 1

Let the force system which Bk exerts on B, be equivalent to a single force

h|
gk/j passing through Qk together with a couple with torque Ek/j’ as in Equations
(57) and (58). Then by the law of action~reaction, the force system which Bj

exerts on Bk is equivalent to a single force - gk/j passing through 0k together

with a couple with torque - gk/j

Let Yy (=1, ..., 6N) be the generalized coordinate derivatives as defined
by Equations (23) and (24). Let the contribution to the generalized active force

F, by these forces transmitted across the connecting joint be ﬁz. Then ?z is given

2

by the expression [145]: 40
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B QU EAY)) * () + Quy/ay ) * (@ )y)

+03 %Ny, * (£ ) + Cu oy (o)

Consider the following cases:

Case 1: y, is mot equal to either gki or Gki’ In this case the
partial velocities and partial angular velocities of Qy,
Ok’ Bj’ and Bk may be expressed by using Equations (70)

and (71) as: ‘
» 3y% sy e = ayXnye

and

3w /3YL ~ 3w, A¥R
Then, by Equation (72), ?2 becomes:
Fo=0
Case 2: ) is equal to one of the éki (i=1, 2, 3). 1In this case,

the partial velocities and partial angular velocities of

ka 0, , Bj’ and Bk become:

ey, =5 P8, = oy
agjlayz = agj/aski =0
and

/Ay =3Py =0
r .
: i : Hence, by Equation (72) and (57), ?1 becomes:
y

Foomnyy CEy) = ~fyy
? B

o 41
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(73)

(74)

(75

(76)
(77)

(78)

(79)

(80)
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Case 3: Yy is equal to one of the aki (i=1, 2, 3). In this case, the

partial velocities and partial angular velocities of Qk’ 0, ,

Bj’ and Bk become:

.
T Iy S e Wk ix oA it

i -

~

L aka/ayz - a,v;Q“/aIZ\ki -0 ( 8Y
| ok py, = 9PkNa = 0 (82
. b, /3y, = /oy =0 (83)
3w /oy, =y /o0, -ny (84)

Hence, by Equation (72) and (58), §2 becomes:
Fo=nyg ~Cmeyy) = -nyy (85)

The above tﬁree cases include thé éoﬁtribué&oﬁ tb thé generalized active
. forces for each of the Yy (2 =1,.0., 6N). Moreover, each of the non-zere con-
tributions (from Equations (80) and (83) occurs individually; that is, each con-
tribution occurs separately in one of the governing equations. Hence, if in a
particular configuration or motion of the system, Y is specified (for example,
03 1s zero) then the £ th governing equation becomes an uncoupled linear espres-
sion for the unknowmn restraining force or moment, thus determining tﬁe compliance.
Conversely, if Yo 18 an unknown variable (representing a degree of freedom) the

contribution to Fz due to the flexibility as modelled by the tramslation and

e torsion springs is determined directly by Equations (61) to (66), (80), and (85).
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CONCLUDING REMARKS

The results of numerically solving the governing differential equations (54)
where the coefficients are given by Equations (55) and (56) are reported and
discussed in References [1, 32, 34, 35, 36, 77, 152-155] for a number of physical
systems and configurations (e.g. human-body models, head-neck models, and flexible

cables).

The application of Equations (54) with these systems, however, is based on
the use of relative orientation angles between the respective bodies of the system
as the generalized coordinates (xz) as opposed to the use of Euler parameters,
quasi-coordinates, and generalized speeds as outlined herein. A problem which
arises in the numerical solution of Equations (54) where orientation angles are
used is that there always exists values of the angles and hence, configurations of
the system, for which the determinant of akl is zero, A numerical solution will,
of course, fail to converge at these singular configurations of the system, and
convergence is very slow for configurations in the vicinity of a singularity.
This problem is avoided by using Euler parameters to relate the orientation geom-

etry to the angular velocity.

The advantages of using Lagrange's form of d'Alembert's principle to obtain
the governing equations of motion for multi-body mechanical systems has been
exposited in detail in References [28-30]. Basically, this principle has the
advantages of Lagrange'; equations or of virtuai work in that non-working intermal
constraint forces, between the bodies of the system, are_automatically eliminated

from the analysis, and may therefore be ignored in the formulation of the governing

equations. The principle, however, has the additional advantage of avoiding the
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differentiation of scalar energy functions. Indeed, the differentiation required
to obtain velocities and accelerations are performed by vector cross products and
multiplication algorithms —- procedures which are ideally suited for numerical
computation. As with Lagrange's equations, Lagrange's form of d'Alembert's prin-
ciple requires the use f generalized coordinates to define the system geometry.
The use of Euler parameters to avoid problems with singularities, as discussed
above, leads naturally to the use of generalized speeds - that is, relative angular
velocity components as the generalized coordinate derivatives., This, . in turn,
leads to additional computational advantages as observed by Kane and Wang [149]
and Likins [122]. Specifically, by using generalized speeds (relative angular
velocity components) as the principle parameters of the analysis, the coefficient
matrices in the governing equations can be obtained directly from the body connec~-

tion array L(k) (see Tables 1. and 2.).

The use of "relative" coordinates, that is, angular velocity components of
the bodies with respect to their adjecining bodies, as opposed to "absolute" coor-
dinates, (for example, angular velocity components in inertial space) also con~
tributes to the computational advantage. In applications with specific geometrical
configurations (1, 31, 32, 34-36, 50, 77, 152-155], it is seen that the geometry is

more easily described in terms of relative coordinates.

The generalization to allow translation between the bodies of the system makes
the analysis applicable to a much broader class of problems than was possible with
those previous analyses which are restricted to linked multi-body systems. For
example, with the head-neck systems of References [152, 154, 155] the use of trans-
lation variables between the vertebrae is necessary to obtain satisfactory models
of such systems. But, and of perhaps greater significance, the generalization to

include translation between the bodies of the system is necessary for an efficient
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analysis of the flexibility and compliance effects as discussed earlier.

In this regard, the compliance can be modelled with a quasi-static approach
whereas the oscillations and impact response require a dynamic analysis with the
introduction of additional degrees of freedom. In both of these cases the analy-
sis outlined herein (using Lagrange's form of d'Alembert's principle together with
the use of generalized speeds) accomodates the effects of flexibility in an extreme-
ly efficient manner. That is, the forces and moments transmitted across the system
joints are directly determined and incorporated into the governing equations.
Moreover, the modelling may be made as detailed as necessary by introducing non-
linearities through the elastic springs and dampers and by increasing the number

of joints and bodies of the system.

Finally, the entire analysis outlined herein is developed with the intent of
obtaining efficiencies in a computer oriented development of the governing dynami-
cal equations. As such, its most productive application will be with large multi-
body systems such as finite-segment models of the human body, chains, cables,

robots, manipulators, and teleoperators.
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